

King Saud University WORKSHOP 1-4pm, 25th September

How to design a study that can be published in refereed journals

Ken Nosaka Professor School of Exercise Health Sciences Edith Cowan University Joondalup, AUSTRALIA

Workshop Outline

- 1. Examples of studies Discussion
- 2. Exercise to design a study Presentation and Discussion
- 3. Questions
- 4. Finalising a proposal
- Conduct the proposed study (hopefully)

15th ECSS Congress 26/06 (Sat) Physiology 16 Effect of Static Stretching and PNF Training on Eccentric Exercise-Induced Muscle Damage

Nosaka K¹, Chen CH^{2,3}, Chen HL², Wu CJ², Tseng KW⁴, Chen TC²

Edith Cowan University (AUSTRALIA) National Chiayi University (TAIWAN) National Taiwan University (TAIWAN) Taipei Physical Education College (TAIWAN)

INTRODUCTION

- Prevention or attenuation of muscle damage is important (Cheung et al. 2003)
- Stretching prior to exercise has no or little prophylactic effect (Johansson et al. 1999, Rodenburg et al. 1994)
- Flexible muscle is less susceptible to muscle damage (McHugh et at. 1999)
- A few studies examined static stretching training effect on muscle damage (Eston et at. 2007, LaRoche & Connoly 2006)
- No study has investigated effect of PNF training on muscle damage

PURPOSE

- To investigate whether an 8-week flexibility training attenuates the magnitude of eccentric exerciseinduced muscle damage
 Hypothesis: less muscle damage
- To compare between static stretching and PNF training on the muscle damage attenuation Hypothesis: SS<PNF

METHODS - Study Design 3 Groups: Static stretching (n=10), PNF training (n=10), Control (n=10) Pre-Training 8-wk Flexibility Training Pre-ECC Exercise Recover f post 1 2 -3 -2 FAM -1 •SS & PNF groups: 3 days/week •Control group: no training -1 Day pre 3 ECC MVC.OA x X XXXXXX ROM х x x x x x x x Soreness х CK/Mb MVC: ICC=0.96, CV=7.8% OA: ICC=0.88, CV=11.3% ROM: ICC=0.93, CV=6.7% Soreness: ICC=0.99, CV=0.9%

Average of 3 trials

Optimum angle

A straight-leg-raise ROM test Average of 3 trials (60-s rest)

Effects of Flexibility Training							
CON	Pre SS	PNF	CON	Post SS	PNF		
97.6	96.1	95.5	99.0	120.1	123.1		
± 3.0	± 3.6	± 3.4	± 3.1	± 3.7*#	± 3.5*#		
70.4	72.7	70.8	71.0	79.0	81.8		
± 3.9	± 3.2	± 3.7	± 4.0	± 3.0*#	± 3.9*#		
117.1	124.9	121.9	119.3	128.7	129.3		
± 6.7	± 7.8	± 7.0	± 6.8	± 8.3	± 6.6*#		
35.6	36.5	34.1	34.5	27.9	23.9		
± 2.4	± 2.2	± 2.3	± 2.8	± 2.6*#	± 2.7*#		
	ects <u>con</u> 97.6 ± 3.0 70.4 ± 3.9 117.1 ± 6.7 35.6 ± 2.4	ects of Fre con Pre SS 97.6 96.1 ± 3.6 70.4 72.7 ± 3.2 117.1 124.9 ± 6.7 ± 6.7 ± 7.8 35.6 35.6 ± 2.2	Pre S Pre S PNF 97.6 96.1 95.5 ± 3.0 ± 3.6 ± 3.4 70.4 72.7 70.8 ± 3.9 ± 3.2 ± 3.7 117.1 124.9 ± 7.0 ± 6.7 ± 7.8 ± 7.0 35.6 36.5 34.1 ± 2.4 ± 2.2 ± 2.3	Pre SS PNF CON 97.6 96.1 95.5 99.0 ± 3.0 ± 3.6 ± 3.4 ± 3.1 70.4 72.7 70.8 ± 1.0 ± 3.9 ± 3.2 ± 3.7 ± 4.0 117.1 124.9 121.9 119.3 ± 6.7 ± 7.8 ± 7.0 ± 6.8 35.6 36.5 34.1 34.5 ± 2.4 ± 2.2 ± 2.3 ± 2.8	Pre PNF CON Post 97.6 96.1 95.5 99.0 120.1 ± 3.0 ± 3.6 ± 3.4 ± 3.1 ± 3.7*# 70.4 72.7 70.8 ± 4.0 79.0 ± 3.9 ± 3.2 ± 3.7 ± 4.0 ± 3.0*# 117.1 124.9 121.9 119.3 128.7 ± 6.7 ± 7.8 ± 7.0 ± 6.8 ± 8.3 35.6 36.5 34.1 34.5 27.9 ± 2.4 ± 2.2 ± 2.3 ± 2.8 ± 2.6*#		

- ROM, muscle soreness, and plasma CK activity and myoglobin concentration following eccentric exercise
- Two-way repeated measures ANOVA to compare three groups (CON vs SS vs PNF) and between two groups (CON vs SS, CON vs PNF, SS vs PNF)
- Bonferroni post hoc test
- Pearson correlation coefficient (r)
- Statistical significance: P < 0.05
- Mean ± SEM

CONCLUSION

The 8-week static stretching and PNF training shifted the optimum angle to a longer muscle length, increased the flexibility and strength of the knee flexors, and similarly attenuated muscle damage (~50%) induced by maximal eccentric exercise of the knee flexors

16th ECSS Congress 08/07 (Fri) OP-PM42 Muscle Damage and Recovery

Two Maximal Isometric Contractions Attenuate Magnitude of Eccentric Exercise-Induced Muscle Damage

Nosaka K¹, Chen HL², Chen TC² ¹Edith Cowan University (AUSTRALIA) ²National Chiavi University (TAIWAN)

INTRODUCTION

- The second eccentric exercise bout results in less muscle damage and faster recovery than the initial bout when the same exercise is repeated (Clarkson et al. 1992)
- Repeated bout effect: the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric exercise (McHugh 2003)
- Low-intensity "non-damaging" eccentric exercise confers protective effect against maximal eccentric exercise (Chen et al. 2007; Lavender & Nosaka 2008, Chen et al. 2011)

Animal studies showed that 75 isometric contractions conferred protective effect against muscle damage induced by 75 maximal eccentric contractions performed 2 weeks later (Koh & Brooks 2001; Pizza et al., 2002) another type of the repeated bout effect
 A familiarisation session in which

 A familiarisation session in which includes maximal isometric contractions appears to attenuate the magnitude of muscle damage induced by maximal eccentric contractions performed a couple days later

RATIONALE

- No previous human studies have examined the effect of maximal isometric contractions on eccentric exercise-induced muscle damage
- It may be that less muscle damage found in the studies with a familiarisation session was due to isometric contractions performed in the session, but this has not been systematically investigated

PURPOSES

- To investigate whether maximal isometric contractions performed 2 days prior to maximal eccentric exercise could attenuate the magnitude of muscle damage Hypothesis: Yes
- To compare between 2 and 10 maximal isometric contractions on muscle damage induced by 30 maximal eccentric contractions Hypothesis: 2<10

Statistical Analyses Two-way repeated measures ANOVA Comparison between 2-MVC and 10MVC groups for the changes in dependent variables following isometry

- dependent variables following isometric contractions
 Comparison between Control, 2-MVC
- and 10-MVC groups for the changes in dependent variables following eccentric exercise
- Bonferroni post hoc test
- Statistical significance: P < 0.05
- Mean ± SEM

RESU	JLTS:	Isom	etric Co	ontract	ions
		pre	post	d1	d2
OA	2-MVC	78.8 ± 2.0	77.7 ± 2.2	78.0 ± 2.0	78.2 ± 2.2
(°)	10-MVC	77.6 ± 2.3	77.0 ± 2.4	76.1 ± 2.3	77.4 ± 2.4
MVC	2-MVC	33.4 ± 1.6	32.6 ± 1.7	32.8 ± 1.7	33.4 ± 1.7
(Nm)	10-MVC	32.5 ± 2.1	32.1 ± 2.0	32.5 ± 2.0	33.1 ± 1.9
ROM	2-MVC	142.7 ± 1.3	142.6 ± 1.2	142.2 ± 1.2	143.0 ± 1.3
(°)	10-MVC	142.8 ± 1.4	142.4 ± 1.4	142.5 ± 1.5	142.8 ± 1.6
CIR	2-MVC	275.1 ± 5.0	275.3 ± 4.9	275.2 ± 4.9	275.5 ± 5.0
(mm)	10-MVC	275.2 ± 5.4	275.4 ± 5.5	275.4 ± 5.5	275.3 ± 5.3
СК	2-MVC	114.9 ± 6.6	-	115.6 ± 7.6	118.4 ± 8.6
(IU/L)	10-MVC	113.4 ± 7.6	-	115.7 ± 7.8	116.2 ± 6.5
Mb	2-MVC	25.1 ± 0.9	-	25.5 ± 1.0	27.0 ± 1.2
(µg/L)	10-MVC	27.3 ± 1.4	_	26.5 ± 1.2	26.3 ± 1.1
SOR	2-MVC	0.0 ± 0.0	-	0.1 ± 0.1	0.3 ± 0.2
(mm)	10-MVC	0.0 ± 0.0	_	0.7 ± 0.3	3.8 ± 1.0
Echo-intensity	2-MVC	62.1 ± 2.0	_	63.8 ± 1.8	65.7 ± 1.9
(A.U.)	10-MVC	60.0 ± 1.2	-	60.3 ± 1.5	62.0 ± 1.0
³⁰ No significant changes =Control					

CONCLUSION

- The magnitude of muscle damage induced by maximal eccentric contractions of the elbow flexors was attenuated by both 2 and 10 maximal isometric contractions performed 2 days prior to the eccentric exercise
- The magnitude of protective effect was greater for 10 than 2 maximal isometric contractions, but the difference was small

Every muscle contraction counts!

17th ECSS Congress 06/07 (Fri) OP-PM37 Muscle Physiology

Protective Effect Conferred by Maximal Isometric Contractions at a Long Muscle Length

<u>Nosaka K 1</u>, Chen TC ² Lin M-J ³, Chen C-H ⁴, Chen HL ² ¹Edith Cowan University (AUSTRALIA) ²NCYU, ³CCU, ⁴NTU (TAIWAN)

INTRODUCTION

- Magnitude of muscle damage is smaller and recovery is faster after the second than initial eccentric exercise bout: <u>Repeated bout effect</u> (Clarkson et al. 1992, McHugh 2003)
- Submaximal eccentric exercise including "low-intensity" (non-damaging) eccentric exercise confers protective effect against maximal eccentric exercise (Chen et al. 2007; Lavender & Nosaka 2008, Chen et al. 2011)

PURPOSE

To investigate the protective effect by 2 maximal voluntary isometric contractions at 20° elbow flexion (2MVCs) on changes in indirect muscle damage markers following maximal eccentric contractions (MaxECC) that were performed immediately after, or 2, 4 or 7 days later

Hypotheses: 1) immediately before: no effect; 2) 4 days: residual effect; 3) 7 days: no effect

Statistical Analyses Two-way repeated measures ANOVA Comparison between Control, 0d, 2d, 4d, and 7d groups for the changes in dependent variables following eccentric exercise Bonferroni post hoc test

- Statistical significance: P < 0.05
- Mean ± SEM

RE	RESULTS: Changes after 2MVCs						
		pre	post	d1	d2		
MVC	-CON	32.7	31.7	32.1	32.9		
(N	Im)	± 0.8	± 0.7	± 0.8	± 0.7		
(A (°)	77.2 ± 1.6	76.7 ± 1.6	77.2 ± 1.6	77.3 ± 1.5		
RO	MC	142.4	142.8	143.0	142.7		
((°)	± 0.9	± 1.0	± 1.0	± 1.0		
C	IR	274.7	274.9	274.8	274.9		
(m	nm)	± 3.7	± 3.6	± 3.6	± 3.6		
(IL	κ J/L)	116.8 ± 4.6	-	117.9 ± 5.1	118.9 ± 5.5		
N	lb	24.3	-	25.4	24.7		
(µi	g/L)	± 0.8		± 1.2	± 0.8		
V	AS	0.0	_	0.3	0.1		
(m	nm)	± 0.0		± 0.1	± 0.1		
46	No significant changes						

CONCLUSION

- The magnitude of muscle damage induced by maximal eccentric contractions of the elbow flexors was attenuated by 2MVCs performed 2 or 4 days, but not immediately or 7 days prior to the eccentric exercise
- The protective effect is short-lived, and it requires at least one day for the effect to be produced

PRACTICAL IMPLICATIONS

- MVC measures at a long muscle length (e.g., familiarisation session) should be scheduled more than a week before MaxECC
- A few MVCs can be used as a "preconditioning" exercise to attenuate potential muscle damage
- Every muscle contraction counts and a few MVCs is better than nothing

Applied Physiology, Nutrition and Metabolism Rejected

Revised

Submitted to European Journal of Applied Physiology

<u>Article</u>

Design a "Publishable" Study

- · Find a good topic
- Know the background of the study (what is the originality of the study?)
- Set a clear research question and hypothesis
- Assume "comments" from reviewers when designing a study (e.g. sample size, reliability, validity, statistical analysis)

Key Factors

- Clear research question
- Logical hypothesis
- Originality
- Rationale
- Significance
- Reasonable approach to the question
- Reliable methods
- Appropriate analysis and interpretation

Exercise 1

What do you want to study?

- List three "questions" that you want to know from "research"
 - 1
 - 2
- 3

Exercise 2

Explain how important and exciting your research question is

- Why is it important?
- How is it exciting?

Exercise 3

If you have an unlimited funding, how will you design a study to answer the research question?

- Aim(s)
- Methods
- Timeline

Exercise 4

Explain the following in ONE sentence

- Background
- Aim(s)
- Methodology

Brain Storming

- Diabetes
- Physical fitness tests for children
- · Effects of pray on health
- Influence of fasting on performance

